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Level structure and spin-orbit effects in semiconductor nanorod dots
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We investigate theoretically how the spin-orbit Dresselhaus and Rashba effects influence the elec-
tronic structure of quasi-one-dimensional semiconductor quantum dots, similar to those that can
be formed inside semiconductor nanorods. We calculate electronic energy levels, eigen-functions,
and effective g-factors for coupled, double dots made out of different materials, especially GaAs
and InSb. We show that by choosing the form of the lateral confinement, the contributions of the
Dresselhaus and Rashba terms can be tuned and suppressed, and we consider several possible cases
of interest. We also study how, by varying the parameters of the double-well confinement in the
longitudinal direction, the effective g-factor can be controlled to a large extent.
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I. INTRODUCTION

In recent years, much of the research in semiconduc-
tor physics has been shifting towards spintronics,1,2 the
novel branch of electronics in which the information is
carried, at least in part, by the spin of the electrons.
The electron spin might be used in the future to build
quantum computing devices combining logic and storage
based on spin-dependent effects in semiconductors. In
order to achieve this goal, much study has been devoted
recently to magnetic and optical3 properties of semicon-
ductors quantum dots4,5 and quantum wells.6 One of the
most popular spin-based devices was proposed by Datta
and Das.7 Improvements to the original design have been
proposed recently by Egues et al.8,9 The Datta-Das de-
vice makes use of the Rashba spin-orbit coupling10,11

in order to perform controlled rotations of the spins of
electrons passing through the channel of a field-effect
transistor (FET), thus creating a spin-FET. The Rashba
term is the manifestation of the spin-orbit interaction in
quasi-one-dimensional (quasi-1D) semiconductor nanos-
tructures lacking structural inversion symmetry. Addi-
tionally, the lack of bulk inversion symmetry enables an-
other spin-orbit term in the electronic Hamiltonian, the
Dresselhaus term,12 which is also taken into account in
the spin-FET design introduced in Ref. [9].

The influence of the Rashba and Dresselhaus Hamilto-
nians in quantum dots (QD) has recently been treated
in a number of theoretical works. The most-often
studied geometry is that of quasi-two-dimensional dots
with parabolic confinement in the plane.13,14,15 On the
other hand, there is a growing interest and experimental
progress in another type of quantum dots defined inside
quasi-1D structures called nanorods or nanowhiskers.16

In these structures, additional confinement in the lon-
gitudinal direction can be introduced with great preci-
sion, thereby allowing the formation of quasi-1D het-
erostructures, such as multiple quantum dots17,18 and dot

superlattices.19 Nanorods can be grown out of numer-
ous semiconductor materials. Their lateral widths can
be controlled by selecting the size of the gold nanoparti-
cles which are used to catalyze their growth and can be
made as small as 3 nm.20 Recently, the transport prop-
erties of these nanorod dots have been measured and the
gated control of the number of electrons in them has been
demonstrated.18

Motivated by this experimental progress, we study the-
oretically the electronic structure of quasi-1D coupled
double dots including spin-orbit effects. This type of dot
systems has also attracted interest in the field of quantum
control of orbital wave functions due to their simplicity
and tunability.21,22,23,24 As we will see here they are also
well-suited for applications involving control of the spin
degrees of freedom since they allow a great deal of control
over the Rashba and Dresselhaus Hamiltonians. In this
paper we study the influence of the Rashba and Dressel-
haus spin-orbit Hamiltonians on the electronic structure
of quasi-1D QDs, akin to those formed in semiconductor
nanorods. Our emphasis on the spin-orbit interaction is
obviously motivated by the current widespread interest
in developing spintronic applications, which require a de-
tailed understanding of the dynamics of the spin degree
of freedom in semiconductor nanostructures.

Let us denote by x and y the two transversal and by z
the longitudinal direction of a quasi-1D nanorod, and let
us call Vz(z) the confining potential that defines a pair of
coupled QDs along the nanorod. The laterally-confining
potentials Vx(x) and Vy(y) are crucial in the determina-
tion of the Rashba and Dresselhaus Hamiltonians and we
consider different combinations of these potentials which
can arise in our elongated geometry. We calculate the
energy spectra and the wave functions by exact numeri-
cal diagonalization of the total Hamiltonian and analyze
how the energy levels and the effective g-factor change
as the Rashba and Dresselhaus couplings are modulated
by varying the lateral confining potentials. Furthermore,
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we study the effect of varying the size of one of the dots
and the width of the central barrier between them. Since
the strength of the spin-orbit interaction varies greatly
among semiconductor compounds, we look at several ma-
terials such as GaAs, InSb, GaSb, and InAs. Finally, we
investigate the effective spin 〈Sz〉 as a function of the
strength of the Rashba-like term for all the eigenfunc-
tions of InSb with two different geometries.

The quantization along different directions results in
peculiar spin-momentum dependence. This in turn re-
sults in SO effects that depend strongly on the symme-
tries of the lateral confinement potentials. As such, the
observation of SO spin splittings, as we will see, is directly
attributable to asymmetry of the confinement and pro-
vides an interesting probe of built-in strain fields and/or
unbalanced composition gradients.

We organize the paper as follows. In Sec. II we intro-
duce the effective one-dimensional Hamiltonian and list
the simplified forms it takes depending on the choice of
confinement potentials. In Sec. III we present the results
for the energy levels including either the Dresselhaus or
the Rashba term. In Sec. IV we study the effective g-
factor and the expectation value of the z-component of
the spin as a function of the strength of the Rashba term
for different semiconductors and eigenstates. In Sec. V
we provide a discussion and conclusion.

II. THE ONE-DIMENSIONAL HAMILTONIAN

We start with the complete Hamiltonian for a three-
dimensional semiconductor structure in the absence of
magnetic field,

H =
p2

2m∗
+ V (r) + HD + HR, (1)

where m∗ is the conduction-band effective mass, p is
the momentum, V (r) is the confinement potential, and
HD and HR are the general Dresselhaus and Rashba
Hamiltonians.25 Here we follow the current practice of
calling Rashba terms those spin-orbit contributions to
the Hamiltonian that arise due to the structural inver-
sion asymmetry of the nanostructure, as opposed to the
Dresselhaus terms which come from the bulk inversion
asymmetry of the III-V semiconductors. Integrating out
the x and y variables, we obtain the following effective
one-dimensional Hamiltonian:

H1d =
p2

z

2m∗
+ Vz (z) + H1dD + H1dR, (2)
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FIG. 1: Potential-energy profile and schematic drawing of
two Al/InSb coupled nanorod quantum dots. For InSb-based
systems we take a well height of 100 meV, and for Al/GaAs,
220 meV. In this example, the QD width is 300 Å and barrier
width 30 Å, with smoothly changing barriers over a width of
a few angstroms. The drawings (a)-(c) illustrate the lateral
confinement geometries described in the text.
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where σi, i = x, y, z, are the Pauli matrices, H1dD is
the one-dimensional Dresselhaus term, and H1dR is the
Rashba-like term enabled by the inversion asymmetry of
the laterally confining potentials Vx and Vy. γR and γD

are parameters that depend on the materials. The aver-
ages 〈. . .〉 are taken over the lowest-energy wavefunctions
of the laterally confining potentials as we assume small
nanorod widths. In Table I we present the parameters
used in our calculations for different semiconductor ma-
terials. An example of the confining potential in the lon-
gitudinal direction, Vz(z), is shown in Fig. 1, along with
a schematic drawing of the nanorod QDs.

We now list four different possibilities for the confin-
ing potentials Vx(x) and Vy(y), based on the degree of
symmetry of the structure. The Dresselhaus and Rashba
Hamiltonians simplify considerably due to the fact that,
in the absence of a magnetic field, the eigenstates can be
chosen real, and therefore, expectation values of the mo-
mentum are zero.26 The four cases are (see Fig. 1(a)-(c)
for schematic drawings of the potentials in the first three
cases):

(a) Circular: Vx (x) , Vy (y) have inversion symmetry
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about the origin and are equal, Vx (x) = V y (y):

HSO = H1dD + H1dR = 0, (5)

yields no SO contributions.

(b) Vx (x) , Vy (y) have no inversion symmetry but are
equal, Vx (x) = Vy (y):

HSO = H1dD + H1dR =
γR

~

〈

∂Vx

∂x

〉

pz (σx − σy) , (6)

so that only Rashba terms are present.

(c) Elliptical: Vx (x) , Vy (y) are inversion symmetric
functions and different, Vx(x) 6= Vy(y):

HSO = H1dD + H1dR =
γD

ℏ3
σzpz

(〈

p2
x

〉

−
〈

p2
y

〉)

, (7)

results in only Dresselhaus terms.

(d) Vx (x) , Vy (y) have no inversion symmetry and are
different, Vx (x) 6= Vy (y):

HSO = H1dD + H1dR =
γD

ℏ3
σzpz

(〈

p2
x

〉

−
〈

p2
y

〉)

+
γR

~
pz

(

σx

〈

∂V

∂y

〉

− σy

〈

∂V

∂x

〉)

, (8)

represents the most general case and both Rashba and Dresselhaus contributions are present.

For the calculation of the effective g-factor we intro-
duce a weak magnetic field along the z-direction. The
field is chosen small so that the x − y orbital wave func-
tions are not perturbed significantly. Thus, we only add
a Zeeman term to the Hamiltonian, HZ = µB

2
g0 Bσz ,

where µB is the Bohr magneton, B is the magnetic field,
and g0 is the electron g-factor as per Table I. To calculate
the energy levels and eigenfunctions, we expand the total
Hamiltonian on a basis set of 300 wave functions of the

quantum box of size L, i.e. φn,s(z) =
√

2
L
sin(nπz

L
)χ (s),

where χ(s) is the spin function, and diagonalize it nu-
merically without further approximations. The size L of
the box is such that the whole double-dot structure is
enclosed in the box, including the barriers on the sides of
the dots and as such is irrelevant in the final eigenstates.
We should notice that the geometry of the dots that we
study here includes widths of 2-5 nm, while the most
common nanorod widths in experiments are of the order
of tens of nm. However, as we mentioned above, there
are no experimental limitations to reducing the nanorod
width to values we consider here. Smaller widths allow us
to explore the basic physics and control of electronic wave
functions with only one relevant lateral energy sublevel.
Moreover, notice that typical charge depletion induced
by the free surfaces further reduces the effective width of
the nanorods, making them more 1D-like. A final com-
ment is that the incorporation of additional transverse
levels in the nanorod is straightforward, but results in
systems of coupled differential equations.

III. ENERGY LEVELS

We present results for the energy levels in cases (b) and
(c), i.e. with only Rashba and Dresselhaus terms present,
respectively. The general case (d) does not present quali-

TABLE I: Parameters for semiconductors25

Parameter GaAs GaSb InAs InSb

m∗ = m/m0
27 0.067 0.041 0.0239 0.013

γR
28(A2) 5.33 33 110 500

γD
27(meV/A3) 24 187 130 220

g0 −0.44 −7.8 −15 −51

tatively different features from (b) or (c) and therefore we
concentrate here on the simpler cases. For case (b) we fix
the strength of the Rashba term by giving the structural
electric field

〈

∂V
∂x

〉

. For case (c), we use as confining po-
tentials in the lateral directions two harmonic-oscillator
potentials with different frequencies: Vq(q) = 1

2
m∗ω2

qq2,
q = x, y. These potentials have associated characteristic
lengths ℓq =

√

~/m∗ωq.

In Fig. 2 we plot the two lowest energy levels for the
InSb QDs taking

〈

∂V
∂x

〉

= 0.5 meV/ Å for case (b), and

ℓx = 50 Å, ℓy = 20 Å for case (c). The indices on the
horizontal axis denote the inclusion of different terms in
the Hamiltonian. The figure shows how the energy lev-
els of H0 (indices 1 and 4) are changed by the inclusion
of a Rashba contribution H1dR (case (b), index 2), and
of a Dresselhaus contribution H1dD (case (c), index 5),
without magnetic field. With a weak magnetic field we
have total Hamiltonians H0 + H1dR + HZ (index 3) and
H0 + H1dD + HZ (index 6). We have carried out analo-
gous calculations for the semiconductors quoted in Table
I and the results were qualitatively similar to the ones
shown here. The main general conclusion is that the ef-
fect of H1dR is always stronger than that of H1dD for the
chosen parameters, which are representative of possible
experimental situations. We note that the Rashba and
Dresselhaus terms do not remove the spin degeneracy (as
expected from the Kramers degeneracy in the absence of
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FIG. 2: Ground-state and first-excited-state energy levels
of the InSb nanorod QDs shown in Fig. 1. We compare the

eigenenergies of (1,4) H0 =
P2

z

2m∗
+ Vz(z) to those of (2) H0 +

H1dR, (5) H0 + H1dD, (3) H0 + H1dR + HZ , and (6) H0 +
H1dD + HZ . B = 0.2T.

magnetic field) but that they simply shift the levels down-
wards, the strength of the shifts being controlled by the
parameters

〈

∂V
∂x

〉

for Rashba and ℓx and ℓy for Dressel-
haus. For the parameters chosen here the Rashba shift
is of the order of 0.1meV for InSb and 0.1µV for GaAs
while the Dresselhaus shift is of the order of 0.01meV for
InSb and 0.01µV for GaAs.

As can be seen in Fig. 3 the energy shift produced by
the H1dR varies quadratically with the structural elec-
tric field

〈

∂V
∂x

〉

. In Fig. 4 we show how the energy levels
vary in case (c) as a function of ℓx for the two lowest-
energy states for fixed ℓy = 50 Å. The functional de-
pendence here is also parabolic. This suggests that the
spin-orbit corrections to the energy levels could be cal-
culated fairly accurately with second-order perturbation
theory. We performed the second-order perturbative cal-
culation in the case with Rashba Hamiltonian, with a
small magnetic field applied (0.1 T) in order to work
with non-degenerate perturbation theory. A compari-
son between the exact and second-order energies shows,
for example, a difference of 17% for

〈

∂V
∂x

〉

= 1.5 meV/Å,
and increasing differences for larger Rashba fields, as ex-
pected. These results agree qualitatively with those of
Ref. [14] for quasi-2D circular dots, where differences of
up to 30% between the results of exact calculations and
of second-order perturbation theory have been found.

IV. EFFECTIVE g-FACTOR

The small magnetic field B = 0.1T z breaks the spin
degeneracy of the ground state and allows the calculation
of the effective g-factor (g∗) as a function of

〈

∂V
∂x

〉

(case
(b)) for GaAs, InSb, InAs and GaSb. In the figures we
report normalized g-factors:

g∗

g0

=
(E2 − E1)

µBBg0

2

, (9)
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FIG. 3: Contribution of the Rashba term to the energy levels
of InSb (a) and GaAs (b) QDs as a function of
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〉
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Ground state, 1 and 2: first and second excited states, respec-
tively. Notice effect is much smaller in GaAs (energy given in
µeV), as anticipated.

0 10 20 30 40 50
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0 10 20 30 40 50
-0.8

-0.6

-0.4

-0.2

0.0

E
D
 (

 m
e

V
 )

lx ( Å )

 GS

 1 InSb

( a )

( b )

E
D
 (

 m
e

V
)

lx ( Å )

 GS

 1
GaAs

FIG. 4: Contribution of the Dresselhaus term to the energy
levels of InSb as a function of ℓx for the ground state (GS)
and the first excited state (1) for ℓy = 50 Å. Level splitting
in GaAs is barely visible on the same scale as in InSb.

where E1 and E2 are the Zeeman-split ground-state lev-
els. Figure 5 shows the results for case (b) (i.e. with
only Rashba contributions) as a function of

〈

∂V
∂x

〉

. The
decreasing trend of g∗ is qualitatively similar for all the
materials but the magnitude of this Rashba effect varies
greatly among them. The decrease of the g∗ is strongest
for InSb and weakest for GaAs.

We now examine what happens to g∗ when one modi-
fies the features of the longitudinal potential Vz(z), such
as the barrier width w and the size of the QDs (so far
we have taken LQD1 = LQD2 = 300 Å). In Fig. 6(a)

we show g∗ for w = 30, 130, and 330 Å as a function
of

〈

∂V
∂x

〉

. We increase the barrier width but reducing at
the same time the sizes of the two QDs so that the to-
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QDs. Asymmetric case: LQD1 = 100 Å and LQD2 = 500 Å;
symmetric case LQD1 = LQD2 = 300 Å.

tal size of the structure remains constant at 630 Å. We
note that increasing w leads gradually to having two un-
coupled QDs and to a stronger variation of g∗. In Fig.
6(b) we set w = 30 Å and change the QDs’ sizes. We
take LQD1 = 100 Å and LQD2 = 500 Å in one case, and

LQD1 = LQD2 = 300 Å in the other. We observe here
that the symmetric potential produces a stronger varia-
tion of g∗ than the asymmetric one.

We look at these symmetric and asymmetric structures
in more detail, and calculate the expectation value 〈Sz〉
as a function of

〈

∂V
∂x

〉

for InSb dots and for the four lowest
pairs of states (Zeeman doublets). Again a magnetic field
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FIG. 7: Mean value of Sz and effective g-factor for InSb sys-
tems with symmetric Vz(z) (two equal dots with LQD1 =
LQD2 = 300 Å). (a) 〈Sz〉 as a function of

〈

∂V
∂x

〉

for the
four lowest-energy doublets (pairs of Zeeman-split states). (b)
g∗/g0 for the same states.

B = 0.1T is included. As expected, 〈Sz〉 = ± 1
2

in the ab-

sence of
〈

∂V
∂x

〉

. Figure 7 shows the results for a symmetric

structure with LQD1 = LQD2 = 300 Å and Fig. 8 for an

asymmetric one with LQD1 = 100 Å and LQD2 = 500 Å.
The symmetric case shows a crossing in 〈Sz〉 (Fig. 7(a))
while the asymmetric one does not (Fig. 8(a)). Using
this information we recalculate the effective g-factor for
the first four pairs of eigenstates for the symmetric (Fig.
7(b)) and asymmetric (Fig. 8(b)) structures. The effec-
tive g-factor, given here by the difference in 〈Sz〉 values
for every Zeeman pair, vanishes at the crossing of 〈Sz〉.
This vanishing of g∗ is a potentially useful effect in spin-
tronics applications, as it can be achieved as a function
of the potentially adjustable Rashba parameter

〈

∂V
∂x

〉

. It
is interesting to note how different spatial asymmetry,
introduced by the confinement potential along z (i.e. dif-
ferent size dots), has strong effect on g∗, and results in a
finite value even at large Rashba fields.

V. CONCLUSIONS

We have studied how the spin-orbit Rashba and Dres-
selhaus terms modify the electronic structure of nanorod
quasi-one-dimensional double quantum dots. We have
solved the problem by numerical diagonalization of the
total Hamiltonian for varying confining potentials, in the
lateral as well as in the longitudinal directions. The main
conclusions of our work are the following:
(1) For our system, the Rashba and Dresselhaus Hamilto-
nians shift downwards the energy levels but do not break
the spin degeneracy of the electronic levels in the ab-
sence of an external magnetic field (as prescribed by the
Kramers degeneracy.)
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FIG. 8: Same as Fig. 7 for asymmetric Vz(z) with LQD1 =
100 Å and LQD2 = 500 Å

(2) The Rashba effects are in general stronger than the
Dresselhaus effects, but the latter are not negligible in
general either.
(3) Changing the strength of the spin-orbit terms, which

is done by changing the lateral confinement length ℓx or
ℓy in the case of Dresselhaus or the structural electric

field
〈

∂V
∂x

〉

in the case of Rashba, results in energy levels
that vary nearly quadratically with the control parame-
ter. This indicates that the SO corrections to the energy
levels are close to the second-order corrections in pertur-
bation theory. We verified this result by comparing the
exact and the perturbatively calculated energies.
(4) By changing the strength of the Rashba term, the
size of the central barrier, and the size and symmetry of
the two QDs, it is possible to control the value of the ef-
fective g-factor, which determines the Zeeman splitting.
In particular, it is possible to make the effective g-factor
equal to zero.
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